小苏子
小苏子PDF在线图书

赤裸裸的统计学 除去大数据的枯燥外衣,呈现真实的数字之美 作者:[美]查尔斯·惠伦

赤裸裸的统计学 除去大数据的枯燥外衣,呈现真实的数字之美 作者:[美]查尔斯·惠伦

赤裸裸的统计学 除去大数据的枯燥外衣,呈现真实的数字之美 出版社:中信出版社

赤裸裸的统计学 除去大数据的枯燥外衣,呈现真实的数字之美 内容简介

赤裸裸的统计学 除去大数据的枯燥外衣,呈现真实的数字之美 目录

赤裸裸的统计学 除去大数据的枯燥外衣,呈现真实的数字之美 精彩文摘

视频网站是如何知道你喜欢的电影类型的?哪些人最有可能成为恐怖分子?我们应该依据什么来评估教学质量,从而帮助孩子选对学校?商场是如何在你的家人之前就知道你怀孕的消息的?基尼系数是衡量社会分配公平程度最完美的指标吗?买福利彩票,去赌场豪赌,投资股票或期货,哪种方式让你跻身富豪排行榜的可能性更大?“缺乏控制力和话语权”的工作,还是“权力大,责任也大”的工作,更容易让职场人士猝死?不止这些,生活中你遇到的各种问题都离不开数据和统计学。统计学已经成为大数据时代最炙手可热的学问。它可以帮我们解决很多琐碎的生活问题和重要的社会问题,并对“黑天鹅”事件和未来做出预测。《赤裸裸的统计学》没有让你避之不及的数学公式,没有满是数字的图表,没有空洞乏味的教科书式说教;《赤裸裸的统计学》有生动诙谐的案例,有你熟悉的生活话题和社会问题,有你一定用得到的统计学知识,有大数据时代的“游戏规则”和“生存法则”。本书将是你遇到过的最好的“数学老师”,它装满了具有现实意义的“课程”,比如为什么一流大学毕业生的收入会高于普通大学毕业生,还有为什么不要买彩票。众所周知,在生活中统计学无处不在,每件事、每个人似乎都可以用统计数字来加以说明。特别是进入大数据时代以后,统计学更是成为炙手可热的学问,它可以帮我们解决很多重要的社会问题,并对“黑天鹅”事件和未来做出预测。但不可否认的是,统计学本身因为囊括大量的数学内容及专业术语,以至于让人觉得高深莫测、很难亲近。《赤裸裸的统计学》的作者查尔斯·惠伦“扒光”了统计学“沉闷的外衣”,用生活中有趣的案例、直观的图表、生动诙谐的语言风格,彻底揭开了统计学、大数据和数字的“神秘面纱”,让我们知道权威期刊、媒体新闻、民意调研中公布的数字从何而来,轻松掌握判断这些统计数字“是否在撒谎”的秘籍。同时,作者还将统计学的工具带入日常生活中,告诉我们为什么不要买彩票,为什么你家附近的商场会知道你怀孕的消息并给你寄来纸尿裤的优惠券,等等。大数据时代你必须掌握的统计学知识,全部都在《赤裸裸的统计学》中。从今天开始,好好使用统计学和数据吧!赤裸裸的统计学引言 我为什么憎恶微积分却偏爱统计学?第1章 统计学是大数据时代最炙手可热的学问第2章 描述统计学第3章 统计数字会撒谎第4章 相关性与相关系数第5章 概率与期望值第6章 蒙提·霍尔悖论第7章 黑天鹅事件第8章 数据与偏见第9章 中心极限定理第10章 统计推断与假设检验第11章 民意测验与误差幅度第12章 回归分析与线性关系第13章 致命的回归错误第14章 项目评估与“反现实”结束语 统计学能够帮忙解决的5个问题致谢基尼系数是否是衡量社会分配公平程度最完美的指标?视频网站是如何知道你喜欢的电影类型的?祈祷真的能让病人的术后康复状况改善吗?是什么导致自闭症发病率一直走高?哪些人最有可能成为恐怖分子?我注意到一个有趣的现象。学生们在课堂上常常抱怨统计学课程有多么难学和无关紧要;可一离开教室,他们又会在午饭时开心地讨论某位球星的击球成功率(夏天)或寒冷指数(冬天),又或者彼此成绩的平均分数(永恒的话题)。他们会指出美国职业橄榄球联盟(NFL)采用“传球效绩指数”用以将一个四分卫的场上表现浓缩为一个数字的不当之处,认为以此作为评价球员的依据略显武断,但可以通过调整其中所包含数据(完成率、平均过球码数、触地得分率、截球率等)的权重比例重新计算,以得出一个与原来不同,但同样可信的球员表现指数。但只要是看过橄榄球比赛的人都会觉得,没有比用一个单一数字来衡量四分卫的表现更加方便的了。关于四分卫表现的这个评价指数是完美的吗?当然不是,无论是什么问题,统计学都极少提供唯一的“正确”方法。但是,这个指数是否以一种易于理解的方式提供了一些有意义的信息呢?那是肯定的,如果想快速地对某场比赛的两名四分卫的表现做出比较,那么这个指数会是一个不错的工具。我是芝加哥熊队的粉丝,在2011年季后赛期间,熊队与芝加哥包装工队进行了一场比赛,以后者的胜利告终。我可以通过很多种方式来描述那场比赛,包括长篇累牍的分析和令人眼花缭乱的原始数据,但这里我为大家提供了一种更加简洁的分析方法。芝加哥熊队的四分卫杰·卡特勒的传球效绩指数为31.8;与此同时,格林湾队的四分卫亚伦·罗杰斯的传球效绩指数为55.4。同样的,我们可以将杰·卡特勒与他之前跟格林湾队比赛时的表现进行对比,在那场比赛中他的传球效绩指数高达85.6。两者相比较,我想大家就不难理解为什么熊队在常规赛时击败了包装工队,但在季后赛时却输给了包装工队。这对于概括场上进行的比赛非常有用。传球效绩指数是否起到了简化问题的作用?是的,但这同时也反映了描述统计学的优势和劣势。仅凭一个数字,你就可以知道杰·卡特勒在与格林湾的那场比赛中败给了亚伦·罗杰斯;但你却无法从这个数字中读出运动员在比赛中的运气是好是坏;不知道他是否传出了一个漂亮的过人球却被愚蠢的队友错过了,导致这个球最终被对方截获;不知道他是否在比赛的某些关键时刻顶住压力发挥出色(因为每一次的成功发球在统计时都被同等对待,不论是决定性的三次触地还是比赛接近尾声时那些毫无意义的发球);不知道那一场的防守是否糟糕透顶……读不出来的信息还有很多。令人好奇的是,同样一群人,在谈论体育、天气或成绩的时候提到数据时还是兴高采烈的,但是当研究人员开始向他们解释基尼系数时,他们的手心却出汗了。基尼系数是衡量收入不均的标准经济学工具,我在之后的内容中将对其做出解释,但是现在我要说的最重要的事情是,基尼系数实质上与传球效绩指数没有多大区别,都是将一系列复杂数据浓缩成一个单一数字的便捷工具。正因如此,基尼系数也拥有描述统计学的大多数优势,如果你想比较两个国家或某个国家不同时期的收入分配情况,该系数就为你提供了一个简单易行的方式。

赞(0)
未经允许不得转载:小苏子图书 » 赤裸裸的统计学 除去大数据的枯燥外衣,呈现真实的数字之美 作者:[美]查尔斯·惠伦